
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 22 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

The Journal of Adhesion
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713453635

Van der Waals Attraction in Multilayer Structures-II
D. Langbeina

a Battelle-lnstitut, Frankfurt/Main, Germany

To cite this Article Langbein, D.(1974) 'Van der Waals Attraction in Multilayer Structures-II', The Journal of Adhesion, 6:
1, 1 — 13
To link to this Article: DOI: 10.1080/00218467408072235
URL: http://dx.doi.org/10.1080/00218467408072235

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713453635
http://dx.doi.org/10.1080/00218467408072235
http://www.informaworld.com/terms-and-conditions-of-access.pdf


1. Adhrsion, 1974. Vol. 6. pp. 1-13 
0 1914 Gordon and Breach Science Publishers Ltd. 
Printed in Northern Ireland 

Van der Waals Attraction in 
Multilayer Structures4 
D. LANGBEIN 
Battalle-lnstitut. FrankfurtlMain, Germany 

(Received December 4 ,  1972) 

The vdW attraction in multilayer structures is reconsidered on the basis of Green’s function 
techniques and finite boundary conditions. No difficulties related to branch points are 
encountered in the course of integration. Electric and magnetic modes are considered. By 
applying Floquet’s theorem an exact expression for the vdW energy between periodic 
mullilayers is obtained. The relations of the present method to the surface mode hypothesis 
and to the reaction field approach are shown. Quantitative conclusions pertaining to the 
dependence of the vdW energy on the separation dare  drawn. 

I INTRODUCTION 

Two alternative approaches to the elucidation of the van der Waals energy 
in multilayer systems have so far been rep~r ted l -~ .  First, there is the approach 
based on the surface mode hypothesis and van Kampen’s integration 
r n e t h ~ d ~ - ~  ; the second is the perturbation approach based on fluctuation 
fields7>*. The surface mode approach considers a finite array of layers and 
solves Maxwell’s equations with respect to electromagnetic modes decreasing 
exponentially in the Their energy gain with varying thickness of 
a distinct inner layer yields the van der Waals force across that layer. The 
restriction to exponentially decreasing modes provides mathematical 
simplicity, while completely neglecting the problem of the outgoing radiation. 
The true eigenvectors of Maxwell’s equations in a homogeneous medium, 
the Hertzian modes, are known to possess a nonvanishing Poynting vector 
and thus are not normalizable in infinite space. We are now wondering 
whether there is any additional contribution of these modes to the van der 
Waals energy. 

The perturbation approach to the van der Waals energy starts with the 
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2 D. LANGBEIN 

consideration of the instantaneous field fluctuations in the layer in question 
and satisfies Maxwell's equations by successively adding the fields reflected 
or transmitted by the different interfaces3. In a finite array of layers an 
outgoing radiation field is left, i.e. the instantaneous fluctuations continuously 
lose energy to the exterior. This energy dissipation is balanced by the random 
energy flow from the exterior to the fluctuations, which is the origin of the 
latter so that the mean intensity of fluctuations is obtained from the 
fluctuation-dissipation theorem. The perturbation approach thus accounts 
for both the ingoing and the outgoing radiation. 

Despite these differing treatments of the radiation field in the two ap- 
proaches, one finds similar final expressions for the van der Waals energyl-j. 
The dispersion energy is given by a frequency integral over the suscepti- 
bilities and structure factors of the layers considered. The frequency 
integration involved in the surface mode approach extends twice along the 
positive imaginary half-axis, while that of the perturbation approach extends 
once along the full imaginary axis. Both integrals agree if either the suscepti- 
bilities are symmetric with respect to the real frequency axis, or  if advanced 
and retarded susceptibilities are used in symmetric manner. However, it is 
difficult to justify the mixed use of advanced and retarded susceptibilities 
within the surface mode approach which actually considers neither ingoing 
nor outgoing modes. There are better reasons to use different susceptibilities 
within the perturbation approach, where the instantaneous fields, by not 
being brought about by causality, may be treated by advanced suscepti- 
bilities, whereas retarded susceptibilities have to be used for all induced fields. 

Attempts at solving this problem by considering non-retarded rather 
than retarded reaction fields are likewise unsuccessful. Treating electrostatic 
interaction fields avoids the question of ingoing and outgoing radiation, 
whereas the question of the correct final expression for the dispersion energy 
remains open. 

A consistent treatment of all electromagnetic modes becomes possible on 
the basis of finite boundary conditions9*l0. Let us avoid the distinction 
between ingoing and outgoing modes by introducing a large cavity, which 
reflects all modes anyway. It singles out those Hertzian modes whose normal 
components vanish on the surface of the cavity. We are left with normalizable 
modes and a discrete rather than a continuous energy spectrum. The dis- 
creteness of the spectrum greatly simplifies the summation over all modes, 
and we are able to replace this summation by a contour integral over the 
logarithmic derivative of the dispersion function. Returning to infinite size 
of the cavity not before this integration is shifted to the imaginary frequency 
axis, we wind up with a final energy expression containing the frequency 
integration over susceptibilities and structure factors along the full imaginary 
axis. 
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ATTRACTION IN MULTILAYER STRUCTURES 3 

In addition to applying this exact retarded treatment to the dispersion 
energy in multilayers, we use Floquet's theorem. In periodic multilayers it 
is not necessary to satisfy the boundary conditions for the electromagnetic 
modes at all interfaces successively, as required by earlier treatments. The 
translational invariance of an infinite periodic lattice entails that the 
normalizable solutions of Maxwell's equations in this lattice merely pick up 
a phase factor on translation by one period. If a finite periodic lattice is 
considered, one obtains linear combinations of two modes with inverse 
phase factors. This theorem enables us to reduce the dispersion function of 
the allowed electromagnetic modes to a finite determinant whose order n 
equals the number of layers per period. This relieves us from the tedious 
counting and summing of reflection and transmission fields reported earlier 
at the expense of evaluating a finite determinant. This evaluation is greatly 
simplified by the fact that due to the integration technique applied we do 
not need the eigenvectors but only the value of the determinant on the 
imaginary frequency axis. This enables several direct conclusions to be drawn 
on the qualitative behavior of the dispersion energy. 

II ARBITRARY MULTILAYERS 

Let us consider an arbitrary system of parallel layers j with the dielectric 
constant E ~ ( w ) ,  the magnetic permeability pj(w) and the thickness dj  (see 
Figure 1). Solving Maxwell's equations in terms of plane waves we introduce 
electric fields of the form 

(1) 

Ir (2) 

E, = curl curl cj- '  ei(k*x+kyY){a. eikl('-'I) + b .  e- ikJ(z -.I)} 

E = curl ei(kxx+kyy){a, e i k j ( Z - Z d  + b e- ikj(z -=I)}  
J i 

with aj, bj being vectors normal to the interfaces 

aj = (0 ,0 ,a j )  ; bj = (o,o, bj) 
and 

Kj2 = kx2 + ky2 + k j 2  = ( : y e j p j  (4) 

At the interface z = z j +  between layers j and j +  1 we require continuity 
of the normal components of the electric displacement and of the magnetic 
induction and of the tangential components of the electric and of the magnetic 
field, which yields the boundary conditions 

j + l  + b j+ l  ( 5 )  a , eikldl + b j  e-ikldj = a 
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4 D. LANGBEIN 
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FIGURE 1 Multilayer system. 

where 

x I  = k lc j - l  

for the electric modes (l) ,  and 

xi = kip,-' 

(7) 

for the magnetic modes (2). 

111 PERIODIC MULTILAYERS 

Let us now turn to periodic layer systems, i.e. let us assume that layerj  + n 
has the same properties as layer j for all j and fixed n. In this case we know 
from Floquet's theorem that the periodic system of boundary conditions (5 ) ,  
(6) has the particular solutions 

Insertion of (9) into (5) ,  (6) yields a finite secular determinant of the order 
of 2n 
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ATTRACTION IN MULTILAYER STRUCTURES 

reinn X l - l < e i n n  

-xl( einn < einn 

1 x2-1 

-x2 1 
eikzdz x2 - 1 ,-ikzdz ... 

... 

... 1 

... -x, 

X,-i 

1 
eik,,dn - 1 - lk,,d,, 

X" 

- ,., eiknd., - iknd, 

Solving for < we find 

A(<)  = e2 - 2tq (n )  + 1 = 0 

where 

~ ( 2 )  = cos k l d l  cos k2d2 - 

~ ( 3 )  = cos k l d l  cos k 2 d 2  cos k3d3  

- (" + $) sin k , d ,  sin k2d2 cos k3d3 

- ! (" + :) cos k l d l  sin k,d2 sin k3d3 

- - (- + :) sin k , d ,  cos k2d2 sin k3d3 

2 x2 

2 x3 

1 x3 

2 x1 

I d l  sin k,t 

The quadratic Eq. ( I  1) has two solutions r ,  one being the inverse of the other. 
If the susceptibilities in the different layers differ only slightly, so that 
x 1  N x2 = . . . N x,, we find q (n) 1: cos x k j d j  < 1. In this case, 6 is 
merely a phase factor. 

The general solution of the linear system of boundary conditions (5),  
(6) can be written as follows 

aj = ui l tm + U J m  

bj = b,it'" + bi25-m 

(14) 

(1 5 )  
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6 D. LANGBEIN 

where i and rn result from the reduction o f j  to a basic period of layers, 

i = j(mod n) ; = rnn + i (16) 

We know the amplitudes aj, b, everywhere in the periodic multilayer once 
we know those in a basic period. As in the case of half-spaces, a,, b, are 
built up from two inverse exponential terms. 

IV FINITE PERIODIC MULTILAYERS 

On the basis of (14), (15) we are able to calculate the amplitudes a,, b, on 
the right-hand side of a finite periodic multilayer from those on the left-hand 
side. We are interested in two types of external boundary conditions: in 
the finite boundary conditions imposed by a cavity (i) and in surface modes 
(ii). 

Let us consider the finite multilayer shown in Figure 2. Introducing the 
cavity implies that we have to put ,E = 0 on the left-hand surface and x I  = 00. 

E2 

P2 

d2 

2 

. .  . 
. . .  

. . .  

. . .  

E" 

P n  

dn 

n 
" , P 

m = l  m =  M 

FIGURE 2 Finite periodic multilayer. 

The surface mode condition, on the other hand, requires that ,E decreases 
exponentially in the exterior for positive imaginary values of k j ,  i.e. we have 
to assume a, = 0. According to (9, ( 6 )  we can satisfy both conditions by 
putting 

(17) 

x 1  = co corresponds to finite boundary conditions, x 1  # co corresponds to 
surface modes. 

The dissection of a,, b, according to (14), (15) is achieved by allowing for 
the fact that the initial values of the particular solutions (9) satisfy 

(18) 

(19 

(XI + x 1 ) a l  + (XI - x 1 ) b i  = 0 

~ 1 1 A 2 n 2 ( 5 )  + b 1 1 x i A 2 n l ( O  = 0 

Q l 2 ' 4 2 " 2 ( r 1 )  + b 1 2 x l A 2 n l ( t - 1 )  = 0 
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ATTRACTION IN MULTILAYER STRUCTURES 7 

where the subdeterminants Aij (5)  result from A ( ( )  by omission of row i and 
column j .  
At the right-hand side of the finite multilayer shown in Figure 2 we find 
according to (9, (6)  and (14), (1 5) 

(all + b1t) lM+'  + ( a l 2  + b12)5- 'M+t )  = ar + br  

x l (a l1  - b l l ) r M + l  + x l ( ~ l 2  - b12)5-('+1) = xi-(ar - b r )  

(20) 

(21) 

Combining (17) to (21) we wind up with 

The ratio of the amplitudes ar/br at the right-hand side of the multilayer 
under consideration is an even function of all interior wave numbqrs k j ,  
j = 1, 2, . . . , n,  according to 

(23) I 
[ X 1 A 2 n 1 ( 5 ) 1 *  = A2,,2(r- ' 1  i 

[ A ( 5 ) ] - k j  = [ A ( t ) ] k j  

[~1A2nl(S)I-k j  = [ A 2 n 2 ( 5 ) I k j  

A change in sign of the wave number k r  at the right-hand side yields the 
inverse ratio briar. 

V T W O  PERIODIC MULTILAYERS 

In order to find the allowed electromagnetic modes in the presence of two 
periodic multilayers, we have to assume agreement of the amplitudes urr 
6, in the interspace. We now consider the two finite periodic multilayers 
shown in Figure 3, and number the layers within multilayer 1 from the left 
to the right, and those within multilayer 2 from the right to the left. 
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8 D. LANGBEIN 

v 

ma1 m=Ml m=Mz m = l  
multilayer 1 interspace multilayer 2 

FIGURE 3 Attracting multilayers. 

Taking into account this inversion of multilayer 2, we have to write 

a r l  = b 

brl e-[&rd = ar2 

We thus obtain the dispersion relation 

(25) eiWa a e-ikrdb b = 0 
r1 r2 - r l  r2 

where a,,, brj, j = 1,2 result from (22) by adding the second subscript j ,  
which refers to multilayers 1 and 2, to all relevant quantities. 

Dispersion relation (25) is valid both for finite boundaries and for surface 
modes. By means of properties (23) we find relation (25) to be real on the 
real frequency axis, if we assume the susceptibilities E,(w), p,(o) to be real 
there, and if we consider the limit x l l ,  x i 2  = co. In this case all eigen- 
frequencies w are also real. 

The application of the finite boundary conditions xll ,  x l z  = a0 provides 
us with a set of completely decoupled electromagnetic modes. Any imaginary 
part of the eigenfrequencies w, results exclusively from the properties of 
the susceptibilities E ~ ( w ) ,  pj(w). i.e. there is an energy dissipation to the 
electron states of the multilayers under investigation, but no direct energy 
exchange between the electromagnetic modes. 

The application of the surface mode condition x l l ,  x 1 2  # 00, on the other 
hand, yields complex eigenfrequencies w, even if the susceptibilities ej(W),  

&w) are real on the real frequency axis, i.e. we are left with directly coupled 
electromagnetic modes. This shows that the surface mode hypothesis is 
not at all convenient for selecting allowed electromagnetic modes. It will be 
demonstrated to cause additional difficulties in the following calculations 
of the vdW energy between multilayers 1 and 2. 
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ATTRACTION IN MULTILAYER STRUCTURES 9 

VI V A N  DER WAALS ENERGY 

Having found a complete set of allowed electromagnetic modes we are now 
able to calculate the vdW energy AE between multilayers 1 and 2. We have 
to provide each eigenfrequency with its free quantum energy kT In Zsinh 
(hw/%T) and to sum the change in energy relative to the limit d = co. 

iio, d 
kT In2 sinh rT 

m 1 
By restricting ourselves to summing only the real part of the energy gain, 

we account for the continuous energy exchange between electromagnetic 
modes and electrons. The energy dissipation from the electromagnetic modes 
(photons) to the electrons is made up, in thermal equilibrium, by an equivalent 
energy dissipation from the electrons to the electromagnetic modes. The 
true dispersion relation of the coupled system electrons plus photons is 
hermitic, its eigenfrequencies are real. A semi-classical decoupling of electrons 
and photons on the basis of susceptibilities has to allow for retarded and 
advanced susceptibilities as well. This is most appropriately done by cal- 
culating only the real part of the photon energy gain’.’’ 

VII COMPLEX INTEGRATION 

The most convenient method of carrying out the summation (26) is the 
Green’s function technique introduced by van Kampen et al.4. It makes use 
of the analytical identity 

where w, runs over all zeros and on runs over all poles of g(o) within the 
contour of integration. This contour, on the other hand, must not contain 
poles of f(o). If g(o) is chosen such that its zeros and poles yield the eigenfre- 
quencies of the allowed electromagnetic modes for separations d and 00 of the 
multilayers, respectively, we can use (27) directly for summing (26). 

This is done by introducing a dispersion function (Green’s function) 
D(o, kr) which is the ratio of dispersion relations (25) for finite and infinite 
separation 
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and puttingg#l0 

D. LANGBEIN 

hw 
( w )  = kT hi sinh - 2kT (29 

g(w) = ( D : ~ ~ D ; ~ ~ D ; ~ D ; ~ ~ ) +  (30) 

The subscripts E and / i  in (30) refer to the electric and magnetic modes ( 1 )  
and (2), respectively. The superscripts ret and adv require the use of retarded 
and advanced susceptibilities. 

Since the poles of the retarded and advanced dispersion functions 0::: and 
D$' lie in the lower and upper half frequency plane, respectively, we choose 
the contour of integration in (27) to enclose the full right-hand half plane. 
It runs along the imaginary axis from + im to - ioo and is closed by a 
semicircle. Since the integral on the semicircle vanishes, we find 

1 1 hw Li 
2kT do d o k T l n  sinh- - In D ~ ' D ~ d v D ~ ' D ~ d V  (31) AE = - g j o m d k k  -. j + i m  

4x1 - i m  

The integration over k in (31) is that over the tangential wave numbers k,, 
k,. After integration by parts and making use of the fact that D:e'Dzd" and 
D:''D;d" are even functions on the imaginary frequency axis, we obtain 

hw 
AE = I S r d k k  2n 4nr +imdw -im ctgh 2 k ~  In Dc(o,  k,)D,,(w, k,) (32) 

The frequency integration in (32) by-passes the poles of ctgh(hw/2kT) from 
the right, i.e. we obtain alternatively 

+ m  

In Dr(iw,, kr)Dp(iw,,, k,) 

where 

hw, = 2nnkT 

Vlll BOUNDARY CONDITIONS 

(33) 

(34) 

With w being imaginary, we find the normal wave numbers k j  for all values 
of the parallel wave numbers k,, k, to become imaginary, too. In this case, 
( is no longer a phase factor, but causes a real exponential increase or decrease 
of the amplitudes aj ,  6,. Returning to infinite multilayers in the final expres- 
sions (32), (33), therefore, enables us to omit all negative powers of ( in the 
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ATTRACTION IN MULTILAYER STRUCTURES 11 

ratios a,,/b,, according to (22),j = 1,2. The dispersion function (28) becomes 
independent of the normal wave numbers k ,  , in the exterior, i.e. independent 
of our choice of boundary conditions. 

This independence of the final energy expressions (32), (33) of the choice 
of boundary conditions in the case of infinite multilayers seems to justify 
the use of the cavity and of the surface mode hypothesis to the same extent. 
However, this would be an erroneous conclusion. The above procedure 
actually applies only to the boundary conditions imposed by the cavity. 

We emphasized in Section 5 that the dispersion relation (25) yields real 
eigenfrequencies, i.e. decoupled electromagnetic modes, only in the limit 
xII,x12 = a. The application of the surface modes condition rather leaves 
us with directly coupled electromagnetic modes. This entails that the 
dispersion function (28) is not analytic in a single frequency plane. We find 
branch points at x I l  = 0, x l z  = 0 which connect four different Riemann 
surfaces 2 xIlr 2 x12 .  

The missing decoupling of electromagnetic modes raises severe doubts as 
to the applicability of Bose statistics. The existence of branch points impedes 
the application of the complex integration techniques. There is no obvious 
principle of how to integrate around the branch points and the respective 
intersections. Consideration of outgoing plane waves only means an intuitive 
selection of that Riemann surface in which the integral along the imaginary 
axis converges. This applies to Lifshitz’s11*12 and van K a m p e n ’ F  procedure 
as well. 

Having been satisfied that only the application of finite boundaries enables 
a consistent utilizatiori of the dispersion relation, of Bose statistics and of 
the contour integration, we conclude that the correct contour of integration 
in the final energy expression (32) is from - ico to + ico, rather than twice 
from 0 to + ico, as suggested by investigations based on the surface mode 
hypo these^^-^. 

IX QUANTITATIVE CONCLUSIONS 

In principle, Eqs. (22), (28) and (33) would enable an exact integration of 
the vdW energy between periodic multilayers. Actually, this integration is 
hampered by the lack of reliable experimental data relating to the frequency 
dependence of the susceptibilities involved. In order to obtain quantitative 
results it is necessary to dissect the exact integrals into integrals related only 
to adjacent layers. In view of the fact that the dispersion relation (28) enters 
the final energy expressions only at imaginary values of o and of the normal 
wave numbers k j ,  it is logical to expand it in terms of exp(ikjdj). We may 
expect all resulting integrals to converge rapidly. 
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12 D. LANGBEIN 

This expansion method turns out to be equivalent to the perturbation 
approach reported ear lie^.^ For the geometric situation shown in Figure 3 
we obtain successively 

and 
x i j  + x;Lf, ctgh k,,d,, 
x i j  ctgh k i j d l j  + xryl 

Xeff = 
' j  

for i = I ,  . . . , n j  and j = 1,2. We can describe each multilayer by an effective 
inverse susceptibility xzy which depends explicitly on the normal wave 
numbers k i j .  

Inserting (35) into (33) and replacing the integration over the tangential 
wave number k by that over the normal wave number k ,  in the interspace 
according to (4) we obtain 

x, + xtr; x, + xi: 

kT +a x - XCff 
AE = - 1 [ dk,k,  1 - e-2krd - 

4n n = - m j K r  

(K, = (w/c,)J~,p(,.  We find an electric as well as a magnetic contribution 
to the dispersion energy. The electric contribution usually predominates the 
magnetic contribution, i.e., the variation of the dielectic constant ej(u) is 
larger than that of the magnetic permeability pj(w). 

The relative contribution by the different layers to the dispersion energy 
(37) depends sensitively on the width d of the interspace. If d is small compared 
to the thickness dnl ,  dn2 of the first left-hand and right-hand layers, we find 
ctgh k,,d,,, to be approximately equal to 1 throughout the region of integration 
in (32), (33), i.e. we may put xi7 = x,,. In that case we recover the findings 
reported by Lifshitz for the dispersion energy between half-spaces1 l.I2.  The 
exact frequency integration extends along the full imaginary axis rather 
than twice along the upper half axis. 

For studying the behavior of the dispersion energy with varying thickness 
d t j  of the different layers it is convenient to rewrite (36) in the form 
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ATTRACTION IN MULTILAYER STRUCTURES 13 

Expanding (38) with respect to the exponentials exp( - 2kijdij)  or with 
respect to the relative change in susceptibility ( x i j  - X ~ ~ ' ~ , ) / ( X ~ ~  + x;EIj) 
we learn that (37) is built up from a power series with respect to these 
quantities, too. The total exponentials arising are linear combinations of 
all distances d,, occurring in the multilayer system, i.e., all effective phase 
shifts kijdi j  of the interacting modes on their motion between the interfaces 
have to be added. The total dispersion energy is given by a sum over contri- 
butions of all closed paths which result from the repeated reflections and 
transmissions of the modes at all interfaces. This is just the way in which 
the dispersion energy arises when the perturbation approach is applied. 
Exact agreement with the findings reported earlier3 is obtained if the 
nonretarded limit c -+ co, k i j  = k ,  of expression (37) is taken. 

The contribution of a distinct layer to the dispersion energy (37) depends 
on the relative phase shift, which the layer imposes on the radiation field. 
The layers next to the interspace in Figure 3 cause a small and large relative 
phase shift if their thickness is small and large compared to the width of 
the interspace, respectively. A significant contribution of an adsorbate layer 
to the dispersion energy may be expected only if its thickness exceeds the 
separation d. In the opposite case the main contribution to the dispersion 
energy arises from the bulk material. This has first been concluded from 
investigations on the effect of layers adsorbed at the surface of interacting 
spheres,l3.l4 and was experimentally verified by Tabor and lsraelachvili for 
the example of stearic acid films on micaI5. 

If, in particular, we consider a periodic double layer, where the suscepti- 
bility of the second neighboring layers equals that of the interspace, we find 
the vdW energy to decrease more rapidly with increasing separation than in 
the case of half-spaces, i.e. more rapidly than d-2. This has also been found 
by Ninham and Parsegian2. 
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